Exercise 1

A population of protozoa develops with a constant relative growth rate of 0.7944 per member per day. On day zero the population consists of two members. Find the population size after six days.

Solution

Use the fact that the relative growth rate is 0.7944 per member per day.

$$
\frac{1}{P} \frac{d P}{d t}=0.7944
$$

Rewrite the left side using the chain rule.

$$
\frac{d}{d t} \ln P=0.7944
$$

The function that you take a derivative of to get 0.7944 is $0.7944 t+C$, where C is any constant.

$$
\ln P=0.7944 t+C
$$

Exponentiate both sides to get P.

$$
\begin{aligned}
P(t) & =e^{0.7944 t+C} \\
& =e^{C} e^{0.7944 t}
\end{aligned}
$$

Use a new constant A for e^{C}.

$$
\begin{equation*}
P(t)=A e^{0.7944 t} \tag{1}
\end{equation*}
$$

On day zero the population is 2 .

$$
P(0)=A e^{0.7944(0)}=2 \quad \rightarrow \quad A=2
$$

Consequently, equation (1) becomes

$$
P(t)=2 e^{0.7944 t} .
$$

Therefore, after 6 days the protozoa population is

$$
P(6)=2 e^{0.7944(6)} \approx 235 .
$$

